Deep self-paced learning for person re-identification

نویسندگان

  • Sanping Zhou
  • Jinjun Wang
  • Deyu Meng
  • Xiaomeng Xin
  • Yubing Li
  • Yihong Gong
  • Nanning Zheng
چکیده

Person re-identification (Re-ID) usually suffers from noisy samples with background clutter and mutual occlusion, which makes it extremely difficult to distinguish different individuals across the disjoint camera views. In this paper, we propose a novel deep selfpaced learning (DSPL) algorithm to alleviate this problem, in which we apply a self-paced constraint and symmetric regularization to help the relative distance metric training the deep neural network, so as to learn the stable and discriminative features for person Re-ID. Firstly, we propose a soft polynomial regularizer term which can derive the adaptive weights to samples based on both the training loss and model age. As a result, the high-confidence fidelity samples will be emphasized and the low-confidence noisy samples will be suppressed at early stage of the whole training process. Such a learning regime is naturally implemented under a self-paced learning (SPL) framework, in which samples weights are adaptively updated based on both model age and sample loss using an alternative optimization method. Secondly, we introduce a symmetric regularizer term to revise the asymmetric gradient back-propagation derived by the relative distance metric, so as to simultaneously minimize the intra-class distance and maximize the inter-class distance in each triplet unit. Finally, we build a part-based deep neural network, in which the features of different body parts are first discriminately learned in the lower convolutional layers and then fused in the higher fully connected layers. Experiments on several benchmark datasets have demonstrated the superior performance of our method as compared with the state-of-the-art approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Person Re-identification: Clustering and Fine-tuning

The superiority of deeply learned pedestrian representations has been reported in very recent literature of person re-identification (re-ID). In this paper, we consider the more pragmatic issue of learning a deep feature with no or only a few labels. We propose a progressive unsupervised learning (PUL) method to transfer pretrained deep representations to unseen domains. Our method is easy to i...

متن کامل

Constrained Deep Metric Learning for Person Re-identification

Person re-identification aims to re-identify the probe image from a given set of images under different camera views. It is challenging due to large variations of pose, illumination, occlusion and camera view. Since the convolutional neural networks (CNN) have excellent capability of feature extraction, certain deep learning methods have been recently applied in person re-identification. Howeve...

متن کامل

Semantics-Aware Deep Correspondence Structure Learning for Robust Person Re-Identification

In this paper, we propose an end-to-end deep correspondence structure learning (DCSL) approach to address the cross-camera person-matching problem in the person re-identification task. The proposed DCSL approach captures the intrinsic structural information on persons by learning a semanticsaware image representation based on convolutional neural networks, which adaptively learns discriminative...

متن کامل

Transferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-Identification

Most existing person re-identification (re-id) methods require supervised model learning from a separate large set of pairwise labelled training data for every single camera pair. This significantly limits their scalability and usability in real-world large scale deployments with the need for performing re-id across many camera views. To address this scalability problem, we develop a novel deep...

متن کامل

Embedding Deep Metric for Person Re-identification: A Study Against Large Variations

Person re-identification is challenging due to the large variations of pose, illumination, occlusion and camera view. Owing to these variations, the pedestrian data is distributed as highly-curved manifolds in the feature space, despite the current convolutional neural networks (CNN)’s capability of feature extraction. However, the distribution is unknown, so it is difficult to use the geodesic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2018